Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Exp Physiol ; 109(3): 405-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37847495

ABSTRACT

Mechanical load is one of the main determinants of cardiac structure and function. Mechanical load is studied in vitro using cardiac preparations together with loading protocols (e.g., auxotonic, isometric). However, such studies are often limited by reductionist models and poorly simulated mechanical load profiles. This hinders the physiological relevance of findings. Living myocardial slices have been used to study load in vitro. Living myocardial slices (LMS) are 300-µm-thick intact organotypic preparations obtained from explanted animal or human hearts. They have preserved cellular populations and the functional, structural, metabolic and molecular profile of the tissue from which they are prepared. Using a three-element Windkessel (3EWK) model we previously showed that LMSs can be cultured while performing cardiac work loops with different preload and afterload. Under such conditions, LMSs remodel as a function of the mechanical load applied to them (physiological load, pressure or volume overload). These studies were conducted in commercially available length actuators that had to be extensively modified for culture experiments. In this paper, we demonstrate the design, development and validation of a novel device, MyoLoop. MyoLoop is a bioreactor that can pace, thermoregulate, acquire and process data, and chronically load LMSs and other cardiac tissues in vitro. In MyoLoop, load is parametrised using a 3EWK model, which can be used to recreate physiological and pathological work loops and the remodelling response to these. We believe MyoLoop is the next frontier in basic cardiovascular research enabling reductionist but physiologically relevant in vitro mechanical studies.


Subject(s)
Bioreactors , Heart , Animals , Humans , Myocardium , Research Design
2.
Circ Res ; 133(3): 255-270, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37401464

ABSTRACT

BACKGROUND: Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS: Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS: We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS: Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.


Subject(s)
Myocytes, Cardiac , Sarcomeres , Rats , Mice , Animals , Sarcomeres/metabolism , Connectin/genetics , Connectin/metabolism , Myocytes, Cardiac/metabolism , Myocardial Contraction/physiology , Myocardium/metabolism
3.
J Gen Physiol ; 155(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37102986

ABSTRACT

Cardiac hypertrophy is associated with diastolic heart failure (DHF), a syndrome in which systolic function is preserved but cardiac filling dynamics are depressed. The molecular mechanisms underlying DHF and the potential role of altered cross-bridge cycling are poorly understood. Accordingly, chronic pressure overload was induced by surgically banding the thoracic ascending aorta (AOB) in ∼400 g female Dunkin Hartley guinea pigs (AOB); Sham-operated age-matched animals served as controls. Guinea pigs were chosen to avoid the confounding impacts of altered myosin heavy chain (MHC) isoform expression seen in other small rodent models. In vivo cardiac function was assessed by echocardiography; cardiac hypertrophy was confirmed by morphometric analysis. AOB resulted in left ventricle (LV) hypertrophy and compromised diastolic function with normal systolic function. Biochemical analysis revealed exclusive expression of ß-MHC isoform in both sham control and AOB LVs. Myofilament function was assessed in skinned multicellular preparations, skinned single myocyte fragments, and single myofibrils prepared from frozen (liquid N2) LVs. The rates of force-dependent ATP consumption (tension-cost) and force redevelopment (Ktr), as well as myofibril relaxation time (Timelin) were significantly blunted in AOB, indicating reduced cross-bridge cycling kinetics. Maximum Ca2+ activated force development was significantly reduced in AOB myocytes, while no change in myofilament Ca2+ sensitivity was observed. Our results indicate blunted cross-bridge cycle in a ß-MHC small animal DHF model. Reduced cross-bridge cycling kinetics may contribute, at least in part, to the development of DHF in larger mammals, including humans.


Subject(s)
Heart Failure, Diastolic , Heart Failure , Humans , Guinea Pigs , Female , Animals , Heart Failure, Diastolic/metabolism , Calcium/metabolism , Myocardial Contraction , Myocardium/metabolism , Myofibrils/metabolism , Kinetics , Cardiomegaly , Protein Isoforms/metabolism , Heart Failure/metabolism , Mammals/metabolism
4.
J Muscle Res Cell Motil ; 44(3): 165-178, 2023 09.
Article in English | MEDLINE | ID: mdl-37115473

ABSTRACT

Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.


Subject(s)
Actins , Electron Microscope Tomography , Rats , Animals , Actins/metabolism , Myocardium/metabolism , Myosins/metabolism , Actin Cytoskeleton/metabolism , Mammals/metabolism
5.
Mol Cell Biochem ; 477(6): 1803-1815, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35316461

ABSTRACT

The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.


Subject(s)
Tandem Mass Spectrometry , Troponin I , Amino Acids , Animals , Calcium/metabolism , Mice , Mice, Transgenic , Myocardial Contraction , Myocardium/metabolism , Peptides , Phosphorylation , Signal Transduction , Troponin I/chemistry , Troponin I/genetics , Troponin I/metabolism
6.
Cardiovasc Res ; 118(3): 814-827, 2022 02 21.
Article in English | MEDLINE | ID: mdl-33723566

ABSTRACT

AIMS: Cardiac remodelling is the process by which the heart adapts to its environment. Mechanical load is a major driver of remodelling. Cardiac tissue culture has been frequently employed for in vitro studies of load-induced remodelling; however, current in vitro protocols (e.g. cyclic stretch, isometric load, and auxotonic load) are oversimplified and do not accurately capture the dynamic sequence of mechanical conformational changes experienced by the heart in vivo. This limits translational scope and relevance of findings. METHODS AND RESULTS: We developed a novel methodology to study chronic load in vitro. We first developed a bioreactor that can recreate the electromechanical events of in vivo pressure-volume loops as in vitro force-length loops. We then used the bioreactor to culture rat living myocardial slices (LMS) for 3 days. The bioreactor operated based on a 3-Element Windkessel circulatory model enabling tissue mechanical loading based on physiologically relevant parameters of afterload and preload. LMS were continuously stretched/relaxed during culture simulating conditions of physiological load (normal preload and afterload), pressure-overload (normal preload and high afterload), or volume-overload (high preload & normal afterload). At the end of culture, functional, structural, and molecular assays were performed to determine load-induced remodelling. Both pressure- and volume-overloaded LMS showed significantly decreased contractility that was more pronounced in the latter compared with physiological load (P < 0.0001). Overloaded groups also showed cardiomyocyte hypertrophy; RNAseq identified shared and unique genes expressed in each overload group. The PI3K-Akt pathway was dysregulated in volume-overload while inflammatory pathways were mostly associated with remodelling in pressure-overloaded LMS. CONCLUSION: We have developed a proof-of-concept platform and methodology to recreate remodelling under pathophysiological load in vitro. We show that LMS cultured in our bioreactor remodel as a function of the type of mechanical load applied to them.


Subject(s)
Heart Failure , Myocardial Contraction , Animals , Heart/physiology , Myocardium , Phosphatidylinositol 3-Kinases , Rats
7.
Sci Rep ; 11(1): 21154, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707114

ABSTRACT

Beta-cardiotoxin (ß-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel ß-adrenergic blocker. However, the involvement of ß-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of ß-CTX as a ß-blocker and its association with the ß-adrenergic pathway. The effects of ß-CTX on isolated cardiac myocyte functions, calcium homeostasis, the phosphorylation level of targeted proteins, and the myofibrillar ATPase activity were studied. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. Like propranolol, ß-CTX attenuated the cardiomyocyte inotropy and calcium transient alterations as induced by isoproterenol stimulation. In contrast, these effects were not observed in forskolin-treated cells. Interestingly, cardiomyocytes treated with ß-CTX showed no changes in phosphorylation level at any PKA-targeted sites in the myofilaments as demonstrated in Western blot analysis. The skinned fibers study revealed no change in myofilament kinetics by ß-CTX. However, this protein exhibited the direct inhibition of myofibrillar ATPase activity with calcium de-sensitization of the enzyme. In summary, the negative inotropic mechanism of ß-CTX was discovered. ß-CTX exhibits an atypical ß-blocker mechanism. These properties of ß-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy.


Subject(s)
Adenosine Triphosphatases/metabolism , Cobra Cardiotoxin Proteins/pharmacology , Myocytes, Cardiac/drug effects , Myofibrils/drug effects , Adrenergic beta-Antagonists/pharmacology , Animals , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Cobra Cardiotoxin Proteins/toxicity , Cyclic AMP-Dependent Protein Kinases/metabolism , Ion Transport , Male , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley
8.
J Mol Cell Cardiol ; 156: 33-44, 2021 07.
Article in English | MEDLINE | ID: mdl-33781820

ABSTRACT

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) regulates cardiac contraction through modulation of actomyosin interactions mediated by the protein's amino terminal (N')-region (C0-C2 domains, 358 amino acids). On the other hand, dephosphorylation of cMyBP-C during myocardial injury results in cleavage of the 271 amino acid C0-C1f region and subsequent contractile dysfunction. Yet, our current understanding of amino terminus region of cMyBP-C in the context of regulating thin and thick filament interactions is limited. A novel cardiac-specific transgenic mouse model expressing cMyBP-C, but lacking its C0-C1f region (cMyBP-C∆C0-C1f), displayed dilated cardiomyopathy, underscoring the importance of the N'-region in cMyBP-C. Further exploring the molecular basis for this cardiomyopathy, in vitro studies revealed increased interfilament lattice spacing and rate of tension redevelopment, as well as faster actin-filament sliding velocity within the C-zone of the transgenic sarcomere. Moreover, phosphorylation of the unablated phosphoregulatory sites was increased, likely contributing to normal sarcomere morphology and myoarchitecture. These results led us to hypothesize that restoration of the N'-region of cMyBP-C would return actomyosin interaction to its steady state. Accordingly, we administered recombinant C0-C2 (rC0-C2) to permeabilized cardiomyocytes from transgenic, cMyBP-C null, and human heart failure biopsies, and we found that normal regulation of actomyosin interaction and contractility was restored. Overall, these data provide a unique picture of selective perturbations of the cardiac sarcomere that either lead to injury or adaptation to injury in the myocardium.


Subject(s)
Carrier Proteins/genetics , Myocardial Contraction/genetics , Myocardium/metabolism , Protein Interaction Domains and Motifs , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Heart/diagnostic imaging , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Phosphorylation , Sarcomeres/metabolism
9.
Life Sci ; 261: 118342, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32853655

ABSTRACT

AIMS: The increased incidence of heart failure with reduced ejection fraction in men compared with women suggests that male sex hormones significantly impact myocardial contractile activation. This study aims to examine associations among molecular alterations, cellular modulations and in vivo cardiac contractile function upon deprivation of testicular hormones. MAIN METHODS: Myocardial structure and functions were compared among sham-operated control and twelve-week orchidectomized (ORX) male rats with and without testosterone supplementation. KEY FINDINGS: Echocardiography and pressure-volume relationships demonstrated a decreased left ventricular ejection fraction compared with sham-operated controls. The percentage of contractility reduction was generally similar to the decrease in tension development detected in both right ventricular trabeculae and skinned isolated left ventricular cardiomyocytes of ORX rats. Reductions in tension cost and the rate constant of tension redevelopment (ktr) in ORX samples suggested a decrease in the rate of cross-bridge formation, reflecting a reduced number of cross-bridges. Slow cross-bridge detachment in ORX rat hearts could result from a shift of myosin heavy chain isoforms towards a slower ATPase activity ß-isoform and reductions in the phosphorylation levels of cardiac troponin I and myosin binding protein-C. All the changes in the ORX rat heart, including ejection fractions and myofilament protein expression and phosphorylation, were completed attenuated by a physiological dose of testosterone. SIGNIFICANCE: Testosterone plays a critical role in regulating the mechanical and contractile dynamics of the heart. Deprivation of male sex hormones cause the loss of normal preserved cardiac contractile function leading to a high risk of severe cardiomyopathy progression.


Subject(s)
Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Testosterone/metabolism , Animals , Disease Progression , Heart/physiology , Male , Myosin Heavy Chains/metabolism , Orchiectomy , Rats , Rats, Sprague-Dawley , Stroke Volume/physiology , Testosterone/administration & dosage , Testosterone/pharmacology , Ventricular Function, Left/physiology
10.
Article in English | MEDLINE | ID: mdl-32742278

ABSTRACT

BACKGROUND: Beta-cardiotoxin (ß-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses ß-blocker activity as indicated by its negative chronotropy and its binding property to both ß-1 and ß-2 adrenergic receptors and has been proposed as a novel ß-blocker candidate. Previously, ß-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein. METHODS: ß-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of ß-CTX concentration. RESULTS: Purified ß-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. ß-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in ß-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis. CONCLUSION: We present an alternative purification method for ß-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from ß-CTX.

11.
J Mol Cell Cardiol ; 141: 11-16, 2020 04.
Article in English | MEDLINE | ID: mdl-32201175

ABSTRACT

Determining transmural mechanical properties in the heart provides a foundation to understand physiological and pathophysiological cardiac mechanics. Although work on mechanical characterisation has begun in isolated cells and permeabilised samples, the mechanical profile of living individual cardiac layers has not been examined. Myocardial slices are 300 µm-thin sections of heart tissue with preserved cellular stoichiometry, extracellular matrix, and structural architecture. This allows for cardiac mechanics assays in the context of an intact in vitro organotypic preparation. In slices obtained from the subendocardium, midmyocardium and subepicardium of rats, a distinct pattern in transmural contractility is found that is different from that observed in other models. Slices from the epicardium and midmyocardium had a higher active tension and passive tension than the endocardium upon stretch. Differences in total myocyte area coverage, and aspect ratio between layers underlined the functional readouts, while no differences were found in total sarcomeric protein and phosphoprotein between layers. Such intrinsic heterogeneity may orchestrate the normal pumping of the heart in the presence of transmural strain and sarcomere length gradients in the in vivo heart.


Subject(s)
Myocardium/metabolism , Animals , Biomechanical Phenomena , Carrier Proteins/metabolism , Myosin Light Chains/metabolism , Phosphorylation , Rats, Sprague-Dawley , Sarcomeres/metabolism , Troponin/metabolism
12.
Physiol Rep ; 7(14): e14192, 2019 07.
Article in English | MEDLINE | ID: mdl-31353833

ABSTRACT

Androgen therapy provides cardiovascular benefits for hypogonadism. However, myocardial hypertrophy, fibrosis, and infarction have been reported in testosterone or androgenic anabolic steroid abuse. Therefore, better understanding of the factors leading to adverse results of androgen abuse is needed. The aim of the present study was to examine the impact of high dose of androgen treatment on cardiac biology, and whether exposure duration modulates this response. Male rats were treated with 10 mg/kg testosterone, three times a week, for either 4 or 12 weeks; vehicle injections served as controls. Four weeks of testosterone treatment induced an increase in ventricular wall thickness, indicative of concentric hypertrophy, as well as increased ejection fraction; in contrast, both parameters were blunted following 12 weeks of high-dose testosterone treatment. Cardiac myocyte contractile parameters were assessed in isolated electrically stimulated myocytes (sarcomere and intracellular calcium dynamics), and in chemically permeabilized isolated myocardium (myofilament force development and tension-cost). High-dose testosterone treatment for 4 weeks was associated with increased myocyte contractile parameters, while 12 weeks treatment induced significant depression of these parameters, mirroring the cardiac pump function results. In conclusion, chronic administration of high-dose testosterone initially induces increased cardiac function. However, this initial beneficial impact is followed by significant depression of cardiac pump function, myocyte contractility, and cardiac myofilament function. Our results indicate that chronic high-testosterone usage is of limited use and may, instead, induce significant cardiac dysfunction.


Subject(s)
Androgens/pharmacology , Heart/drug effects , Myocardial Contraction , Testosterone/pharmacology , Androgens/administration & dosage , Androgens/adverse effects , Animals , Calcium/metabolism , Cells, Cultured , Heart/physiology , Male , Rats , Rats, Sprague-Dawley , Sarcomeres/drug effects , Sarcomeres/metabolism , Sarcomeres/physiology , Testosterone/administration & dosage , Testosterone/adverse effects
14.
Am J Physiol Heart Circ Physiol ; 316(2): H360-H370, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30499711

ABSTRACT

Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.


Subject(s)
Antioxidants/pharmacology , Doxorubicin/toxicity , Estrogens/pharmacology , Papillary Muscles/metabolism , Testosterone/pharmacology , Animals , Calcium/metabolism , Cardiotoxicity , Estrogens/metabolism , Female , Male , Myocardial Contraction , Myofibrils/drug effects , Myofibrils/metabolism , Myofibrils/physiology , Oxidative Stress , Papillary Muscles/drug effects , Papillary Muscles/physiology , Phosphorylation , Protein Processing, Post-Translational , Rats , Rats, Sprague-Dawley , Sex Factors , Testosterone/metabolism , Troponin I/metabolism
16.
Prog Biophys Mol Biol ; 138: 116-125, 2018 10.
Article in English | MEDLINE | ID: mdl-29884423

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high-throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish.


Subject(s)
Cardiomyopathies , Disease Models, Animal , Phenotype , Zebrafish , Animals , Cardiomyopathies/pathology , Humans , Intracellular Space/metabolism
18.
J Mol Cell Cardiol ; 114: 345-353, 2018 01.
Article in English | MEDLINE | ID: mdl-29275006

ABSTRACT

AIM: Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. OBJECTIVE: The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. METHODS AND RESULTS: We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9µm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. CONCLUSIONS: We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.


Subject(s)
Cardiomyopathies/pathology , Muscular Dystrophy, Duchenne/pathology , Myofibrils/pathology , Animals , Calcium/metabolism , Disease Models, Animal , Dogs , Electrocardiography , Intracellular Space/metabolism , Muscular Dystrophy, Duchenne/diagnostic imaging , Myocardium/pathology , Myofibrils/metabolism , Phosphorylation , Sarcomeres/metabolism , Signal Transduction , Troponin/metabolism
19.
Pflugers Arch ; 469(12): 1603-1613, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28780592

ABSTRACT

The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, ß myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.


Subject(s)
Adaptation, Physiological/physiology , Heart Ventricles , Myofibrils , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mole Rats
20.
J Biochem Mol Toxicol ; 31(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28590578

ABSTRACT

The benefits of α-mangostin for various tissues have been reported, but its effect on the heart has not been clarified. This study aimed to evaluate the effects of α-mangostin on cardiac function. Using a cardiac sarcoplasmic reticulum (SR) membrane preparation, α-mangostin inhibited SR Ca2+ -ATPase activity in a dose-dependent manner (IC50 of 6.47 ± 0.7 µM). Its suppressive effect was specific to SR Ca2+ -ATPase but not to myofibrillar Ca2+ -ATPase. Using isolated cardiomyocytes, 50 µM of α-mangostin significantly increased the duration of cell relengthening and increased the duration of Ca2+ transient decay, suggesting altered myocyte relaxation. The relaxation effect of α-mangostin was also supported in vivo after intravenous infusion. A significant suppression of both peak pressure and rate of ventricular relaxation (-dP/dt) relative to DMSO infusion was observed. The results from the present study demonstrated that α-mangostin exerts specific inhibitory action on SR Ca2+ -ATPase activity, leading to myocardial relaxation dysfunction.


Subject(s)
Diastole/drug effects , Heart Ventricles/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Xanthones/toxicity , Animals , Heart Ventricles/physiopathology , Male , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...